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Abstract: Given an edge-weighted graph, a spanning tree of the graph is a tree containing all the vertices and some 

or all the edges. The minimum spanning  tree (MST) or minimum weight spanning tree (MWST) problem calls for 

finding the spanning tree whose weight is less than or equal to the weight of every other  spanning tree. In this 

paper, we have presented an algorithm for finding minimum spanning tree which is different from the traditional 

Kruskal’s and Prim’s algorithm. In this algorithm we transform the given graph into a forest and then the 

minimum spanning tree is obtained from the forest. We have also implemented the proposed algorithm and the 

Kruskal’s algorithm to find minimal spanning tree using Java programming language and the illustrations are 

demonstrated through a Java applet. We have presented some numerical examples to explain the solution 

procedure. 
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1. INTRODUCTION 

Minimum spanning tree algorithm have direct applications in the design of networks including computer networks [1], 

transportation networks and it also use the area like cluster analysis [2], can provide an approximate solution to minimum 

spanning tree problem etc. 

Kruskal’s and Prims [3] are two well known algorithms to find the minimum spanning tree from a graph. Pettie and 

Ramachandran [4] proposed an optimal greedy algorithm to find minimal spanning tree. In this paper we present a new 

algorithm for solving minimum spanning tree problems which will work first finding forest formation and then it will 

convert forest into spanning tree. 

2. PRELIMINARIES 

In this Section we provide some basic definitions and concepts. 

Graph: A graph G consists of a set V of vertices (nodes) and a set E of edges (arcs).We write G = (V, E), V is a finite and 

non-empty set of vertices. E is a set of pairs of vertices, their pairs are called edges. 

Weighted graph: A graph G is said to be weighted if each edge e in G is assigned a non-negative numerical value w (e) 

called the weight or length of e. 

Tree: A tree is a connected acyclic (i.e. free from cycles) graph. 

Minimum Spanning tree: The Minimum spanning tree (MST) of a graph defines the cheapest subset of edges that keeps 

the graph in one connected component. 

Array: An array can be defined as a finite collection of homogeneous (similar type) elements. The elements in an array 

are always stored in consecutive memory locations. 

Stack: A stack is a non-primitive linear data structure. Here deletion and insertion of the element is done at one end, 

known as top of stack. Here the most frequently accessible element in the stack is the top most elements, whereas the last 

accessible elements are the bottom of the stack  
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3. AN IMPROVED MINIMUM SPANNING TREE ALGORITHM 

In this algorithm for solving minimum spanning tree problems which will work first finding forest formation and then it 

will convert forest into spanning tree. 

3.1   Algorithm Description: 

Initially every node in the graph is considered individually and the shortest edge from that node is taken into 

consideration. After that we will traverse the graph to find out the minimum edges from each node in the graph. We 

encounter the output. If the best case is taken into account, the output of this step would be the minimum spanning tree 

itself. If, that is not the case, as we traverse from a start node to the last, we will encounter a break in the traversal. Thus 

all nodes will not be visited while traversal. And the outcome is the forest which is formed. Hence, to convert the forest so 

formed by the previous step of the algorithm, at the point of the break the next shortest edge is established. Then the same 

procedure from the traversal step is continued again till all the nodes are visited. 

3.2   Algorithm: 

The proposed algorithm to find minimum spanning tree is given below. 

        Procedure Mspan(G) 

       Input: 

        /*G is the given weighted undirected graph 

          N is the number of vertices 

          u is the chosen Source vertex for each iteration. 

          Y is an element in the array. 

          a[ ] is the  array. 

          v is the destination vertex. 

        */ 

Output: Minimum spanning tree of the graph G        

        Begin 

For u =1 to N 

         Visited [u] =0 

        Choose min( ( , ))e w u v
v G




 

         include e in the forest 

 End for 

      u=1; i=1;count=1; 

      Visited[u] =1; 

      Push u into Stack; 

      Traverse(u); 

      while  Count  < N  do 

        if  Stack !=Empty 

               a[]=Pop(); 

                i++; 

               u=Stack[TOP]; 

              Traverse(u); 

         End if 

           if  Stack = Empty; 

                 Choose<Y,V’> 

              /*<Y,V’> is the next   shortest path */ 

                 Visited [V’]=1; 
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                 Count ++; 

                Traverse(V’); 

            End if 

         End while 

Return 

Traverse(u) 

for  each non visited adjacent  vertex V; 

          Visited[V]=1; 

          Count ++; 

          Traverse (V); 

End for 

        End. 

3.3  An Example: 

A TV cable company is in the processing of planning a network for providing cable TV service to five new housing 

development areas. The cable system network is summarized in figure-2. The numbers associated with each branch 

represent the miles of cable needed to connect any two locations. Node u0 represents the cable TV relay station and the 

remaining nodes (u1 to u5) represent the five development areas. A missing branch between two locations implies, that is 

prohibitively expensive or physically impossible to connect the associated development areas. It is required to determine 

the links that will result in the use of minimum cable miles while guaranteeing that all areas are connected (directly or 

indirectly) to the cable TV station.    

 

Figure-2: Example 
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3.4   COMPLEXITY ANALYSIS: 

The first for loop in the algorithm is | |V . The traversing cost in the graph is (| | log | |)O E V  . Hence the total time 

complexity for the MSpan algorithm is 
2(| | log | |)O E V , which is same as the time complexity  of Kruskal’s  and 

Prim’s [3] [5] algorithm. 

4. EXPRIMENTS USING JAVA APPLET PROGRAMMING 

Here we have designed JAVA APPLET programming based on Kruskal’s algorithm and Mspan’s algorithm compare with 

our result which gives us equal values as calculated example 3.3.The initial graph is shown in figure 3 and figure 7. The 

final result is shown in figure 5 and figure 8. 
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4.1   Implementation of Kruskal’s Algorithm: 

 

Fig 3:  Initial  Step with reference to Example-3.3 

 

Fig 4:  Initial  Step with  edge sorting as in Fig 3 

    Final output                

 

Fig 5: minimum spanning tree for example 3.3  
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Fig 6: Optimal edge associated with minimum spanning tree as in figure 5 

 Here the weight of Minimum Spanning Tree =5+6+6+7+11 =35 

4.2    Implementation of Mspan Algorithm: 

 

Fig 7: Initial  Step with reference to Example-3.3 

    Final output                    

 

Fig 8: Minimum spanning tree obtained by Mspan 
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Here the weight of Minimum Spanning Tree =5+6+6+7+11 =35. 

5. CONCLUSION AND FUTURE SCOPE 

5.1 Conclusion: 

In this paper we have developed an algorithm which is named as “MSpan” to find out the minimum spanning tree from a 

weighted graph. The time complexity of MSpan is same as that of Kruskal’s and Prims algorithm. The additional feature 

of MSpan algorithm is that, there no formation of loop. Hence running a check for occurrence of closed loop is 

completely avoided. 

5.2 Future Scope: 

In the future, we will explore and test our developed algorithm “Mspan” in various domains. It is an important 

combinatorial optimization problem which is improved   dramatically in the last decade. The availability of reliable 

software, extremely fast and inexpensive hardware and high –level languages that make the modeling of complex 

problems faster have led to much greater demand for optimization tools. Keeping the above points of view our future 

work will more emphasize much larger problems on personal computers, much of the necessary data is routinely collected 

and tools exist to speed up both the modeling and the post optimality analysis.   
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